2008年12月29日星期一

含笑半步癫

传说中的含笑半步癫,是以蜂蜜、川贝、桔梗、加上天山雪莲配制而成。今人糖白虎改以跳跳巧克力取而代之,不需冷藏,也没有防腐剂,除了生性猛烈之外,味道还很好吃!实在是家居旅行,整人自娱,必备良品。
注册失败,绝无版权。
以上是来自宝岛台湾的含笑半步癫。
说实话我觉得这是不是阿扁总统的御用圣品啊!?
至少立法院委员是常备的吧。

2008年12月28日星期日

未开化的南中国乡巴佬

未开化的南中国乡巴佬喝瓶装汽水不用吸管,而是用嘴征服它。
未开化的南中国乡巴佬喜欢到香港扫货,并回来炫耀。
未开化的南中国乡巴佬会觉得广州的OL全世界最IN。
未开化的南中国乡巴佬喜欢吃水稻制品。
未开化的南中国乡巴佬通常受到比他高一级的乡巴佬的歧视。
未开化的南中国乡巴佬也会看不起所谓的"捞头"。
未开化的南中国乡巴佬家里会有四君子的珍藏,但挂着发霉。
未开化的南中国乡巴佬经常成为XX派学者炮轰的对象。
未开化的南中国乡巴佬好像会怀念少时能吃到的山珍海味。
未开化的南中国乡巴佬被爱猫的人抗议。
未开化的南中国乡巴佬很怕XX部派来的大官。
未开化的南中国乡巴佬喜欢带老婆去做产前检查,堕胎成功率相当高。
未开化的南中国乡巴佬田里没有拖拉机,但有牛。
未开化的南中国乡巴佬不会讲普通话。
未开化的南中国乡巴佬还会写信。
未开化的南中国乡巴佬随地吐痰。
未开化的南中国乡巴佬会传阅陈X希的雅照。
未开化的南中国乡巴佬会送自己的孩子上大学,并霸占寝室的最佳床位。
未开化的南中国乡巴佬会被门户网站具有网络文学高度的挑逗性标题吸引并上当。
未开化的南中国乡巴佬都不愿意捐款,但希望得到捐款。
未开化的南中国乡巴佬家里用得是老式脚踩的缝纫机。
未开化的南中国乡巴佬重视邻里的关系,但很假。
未开化的南中国乡巴佬经常上演兄弟不和的闹剧。
未开化的南中国乡巴佬喜欢在公共场合大声喧哗。
未开化的南中国乡巴佬喜欢手里握着遥控器,结果发现地方电视台插播的全是经过公认的高品质广告。
未开化的南中国乡巴佬在大城市的商场里都受到特别关注。
未开化的南中国乡巴佬喜欢去供养有钱人。
未开化的南中国乡巴佬有的我都有。

间歇性厌女症候群

这种精神病很难得,真的,我得了。
但很明显,我的激素水平很正常。

其实我这个人并不喜欢表露自己的真情实感。
但是她的笑,我要用一辈子来遗忘。
多么怀念会揪我耳朵的她。
多么怀念大声提醒大摇大摆的我裤链没拉的她。
多么怀念在夕阳下有着高鼻梁侧脸轮廓的她。
现在我才发现,错过了那我唯一有认识的爱情。

2008年12月23日星期二

翻译手件原文

Open InformationUSER DESCRIPTION 1 ( 20 )EAB/RNR/TG Petter Edström +46858533195 66/1553-HSC 103 12/4 UenEAB/RNR/TGC (Lennart Blixt) 2002-09-24 APrepared (also subject responsible if other) NoApproved Checked Date Rev ReferenceEUser Description, Overlaid/Underlaid SubcellsContents Page1 Introduction . .. ... ... .. ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 22 Glossary .. ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 22.1 Concepts .. ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 22.2 Abbreviations and Acronyms ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 23 Capabilities . .. ... ... .. ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 33.1 Increased traffic capacity .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 33.2 Dynamic OL/UL Subcells .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 53.3 BCCH in Overlaid Subcell . ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 63.4 Multi Band Cell ... ... .. ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 64 Technical description .. .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 64.1 General . ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 64.2 Algorithm .. ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 74.3 GPRS/EGPRS Impacts . .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 134.4 Related Counters ... .. ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 134.5 Main changes in Ericsson GSM System R10 / BSS R10 ... ... .. ... .. ... ... .. 135 Engineering guidelines .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 145.1 Subcell Load Distribution Active .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 145.2 Subcell Load Distribution Inactive ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 155.3 High Capacity Networks .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 176 Parameters .. .. ... ... .. ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 186.1 Main controlling parameters . ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 186.2 Additional parameters ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 186.3 Parameters controlling Dynamic OL/UL Subcells .. .. ... .. ... ... .. ... .. ... ... .. 196.4 Value ranges and default values .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 197 References .. .. ... ... .. ... .. ... ... .. ... .. ... ... .. ... ... .. ... .. ... ... .. ... .. ... ... .. 20A4 XSEIF R2Open InformationUSER DESCRIPTION 2 ( 20 )EAB/RNR/TG Petter Edström +46858533195 66/1553-HSC 103 12/4 UenEAB/RNR/TGC (Lennart Blixt) 2002-09-24 APrepared (also subject responsible if other) NoApproved Checked Date Rev ReferenceE1 IntroductionThe traffic capacity of a cellular network can be increased by adding morefrequencies or reducing the frequency re-use distance. One approach is toapply a second frequency re-use pattern, using the existing sites, with a tighterfrequency reuse as overlay on the existing pattern. These cells should berestricted in size, making shorter re-use distance possible without causingexcessive co-channel or adjacent channel interference. They are termedoverlaid (OL) subcells, whereas the original cells, now with the OL subcellsassociated, are termed underlaid (UL) subcells. By having more frequenciesper cell, the network capacity is increased.2 Glossary2.1 ConceptsSCLD Subcell load distribution moves connections between thesubcells based on a certain limit of traffic load in the UL subcell.2.2 Abbreviations and AcronymsBCC Base Station Colour CodeBCCH Broadcast Control ChannelBSIC Base Station Identity CodeCHAP Channel Allocation ProfileGPRS General Packet Radio ServiceHSCSD High Speed Circuit Switched DataOL Overlaid (subcell)PDCH Packet Data ChannelSACCH Slow Associated Control ChannelSCLD Subcell Load DistributionSDCCH Standalone Dedicated Control ChannelTA Timing AdvanceTEMS Ericsson GSM Measurement and System Optimisation ToolOpen InformationUSER DESCRIPTION 3 ( 20 )EAB/RNR/TG Petter Edström +46858533195 66/1553-HSC 103 12/4 UenEAB/RNR/TGC (Lennart Blixt) 2002-09-24 APrepared (also subject responsible if other) NoApproved Checked Date Rev ReferenceETEMS CellPlannerEricsson Cell Planning Prediction ToolTRX TransceiverTSC Training Sequence CodeUL Underlaid (subcell)3 Capabilities3.1 Increased traffic capacityThe fundamental idea with OL/UL subcells is that traffic close to the site ismoved to the OL subcell, while the traffic closer to the cell border is moved tothe UL subcell. By controlling the traffic in this way, the frequencies in theOL subcell can have a tighter reuse.ExampleThe following example shows an application of the basic OL/UL subcell feature.Consider two cells that are located near to each other, cell A containingfrequencies f 1 and f 2 and cell B containing frequencies f 3 and f 4.The traffic intensity in cell A is high. It is decided to assign f 4 to cell A, in orderto solve the capacity problem. However, due to the close vicinity of Cell A andB, this will create interference problems at their respective cell border. In figure1, the solid arrow indicates the carrier signal and the dashed arrow indicates aninterfering signal. Note that only downlink interference from cell B is shown.Open InformationUSER DESCRIPTION 4 ( 20 )EAB/RNR/TG Petter Edström +46858533195 66/1553-HSC 103 12/4 UenEAB/RNR/TGC (Lennart Blixt) 2002-09-24 APrepared (also subject responsible if other) NoApproved Checked Date Rev ReferenceEf1 f2f3f4f4f4f4AFigure 1 The MS using f4 in the vicinity of the cell border experiencesdownlink co-channel interferenceAn OL/UL subcell structure can be used to solve the interference problem.As shown in figure 2, an OL/UL subcell structure is defined for cell A. f 4is assigned to the OL subcell, and f 1 and f 2 to the UL subcell. The totalnumber of frequencies in cell A is still 3. Since f 4 is used in the OL subcell, theconnections using f 4 will experience less downlink co-channel interference,resulting in an improved C/I.Open InformationUSER DESCRIPTION 5 ( 20 )EAB/RNR/TG Petter Edström +46858533195 66/1553-HSC 103 12/4 UenEAB/RNR/TGC (Lennart Blixt) 2002-09-24 APrepared (also subject responsible if other) NoApproved Checked Date Rev ReferenceEf1 f2f3f4f4f4f4AOL ULf4Figure 2 The MSs using f4 are restricted to the OL subcell, where theco-channel interference is limitedThe OL/UL subcell feature can be used to increase the traffic capacity ona system-wide scale. The OL subcell are introduced on a general basisthroughout the network. Due to the smaller size in the OL subcell, a tighterfrequency reuse pattern can be applied to the OL subcell, when comparedwith UL subcell. For example, 3/9 for OL subcells and 4/12 for UL subcells.In this way, the number of frequencies per cell are increased and thus thesystem capacity.3.2 Dynamic OL/UL SubcellsWith ordinary OL/UL subcells (SCLD = OFF), mobile stations within the OLsubcell service area will be served by the OL subcell even if there is a lotof spare capacity in the UL subcell. This is generally undesirable since theOL subcell frequencies (having a tighter re-use pattern and perhaps beingtransmitted at lower output power) may be more vulnerable to interferencethan the frequencies in the UL subcell.To solve this problem Ericsson GSM System offers a feature called DynamicOL/UL Subcells, which aims at keeping the mobile stations connected to theUL subcell. The OL subcell is only used, when the traffic in the UL subcellincreases beyond a certain limit. Secondly, the mobiles closest to the site aremoved to the OL subcell, which means that power control (see User Description,Open InformationUSER DESCRIPTION 6 ( 20 )EAB/RNR/TG Petter Edström +46858533195 66/1553-HSC 103 12/4 UenEAB/RNR/TGC (Lennart Blixt) 2002-09-24 APrepared (also subject responsible if other) NoApproved Checked Date Rev ReferenceEDynamic BTS Power Control and User Description, Dynamic MS PowerControl) are more effective for the OL subcell and less interference is spread.3.3 BCCH in Overlaid SubcellSince the BCCH carrier is non-hopping and does not introduce any of thefrequency diversity or interference diversity gains that hopping channels do, theBCCH carrier should never be used at low signal strength. This would lead tobad perfomance and possibly dropped calls.If Dynamic OL/UL subcells and synthesised frequency hopping is used togetherwith the feature BCCH in Overlaid Subcell, you can improve both the capacityand quality in a tight reuse network, since only mobiles with low pathloss areallowed onto the BCCH carrier. This ensures that the BCCH frequency carriesless interfered traffic and then the BCCH can be planned with a tighter re-use.As a result of this the BCCH can be planned so that it is only carrying traffic atbusy hour. This optimises the utilisation of the BCCH frequency for traffic.Since the hopping channels in the underlaid subcell will be offloaded when theBCCH frequency is used more extensively, the quality is improved on thehopping TCH channels. This will allow more traffic onto these channels. (seeUser Description, BCCH in Overlaid Subcell).Note that the BCCH in the overlaid subcell is still covering the entire celleventhough the TCHs on the BCCH carrier frequency have parameterrestricted coverage.3.4 Multi Band CellIt is possible to configure different frequency bands on different subcells ina subcell structure, in order to have a more integrated network (see UserDescription, Multi Band Cell).4 Technical description4.1 GeneralThe OL and UL subcells share a common Broadcast Control Channel (BCCH),which resides in the UL subcell. Stand Alone Dedicated Control Channels(SDCCHs) may be defined in both OL and UL subcells, but immediateassignment can only be made to the UL subcell. If subcell load distributionis active, SDCCHs can only be defined in the UL subcell. However, this ischanged if the BCCH is used in the overlaid subcell (see User Description,Overlaid/Underlaid Subcells).There is a path loss threshold and a timing advance threshold for each OLsubcell as a criterion to maintain the restricted service area of the OL subcell.Open InformationUSER DESCRIPTION 7 ( 20 )EAB/RNR/TG Petter Edström +46858533195 66/1553-HSC 103 12/4 UenEAB/RNR/TGC (Lennart Blixt) 2002-09-24 APrepared (also subject responsible if other) NoApproved Checked Date Rev ReferenceEAlso, the BTS output power can be set to a different value in the OL subcellcompared to the UL subcell in order to reduce the caused interference.The Dynamic OL/UL subcells feature makes it possible to control the trafficdistribution between the OL and the UL subcell in such a way that the OLsubcell is only used when the traffic load in the UL subcell exceeds a certainthreshold. In addition, the mobiles closest to the site are moved first (from ULto OL subcell).4.2 Algorithm4.2.1 OL/UL subcell change, Subcell Load Distribution inactiveA path loss threshold LOL with a hysteresis LOLHYST and a timing advancethreshold TAOL with a hysteresis TAOLHYST, define the serving area of anOL subcell and control the OL/UL subcell change algorithm in Locating (seeUser Description, Locating).Locating evaluates the conditions for changing subcell every Slow AssociatedControl Channel (SACCH) period and if they are fulfilled a subcell change isrequested. The conditions for changing subcell within a cell are the following:From UL to OL (see figure 3):The downlink path loss L and the filtered timing advance ta shall fulfil thefollowing condition:L ≤ LOL − LOLHYST andta <> LOL + LOLHYST orta ≥ TAOL + TAOLHYSTThe downlink path loss, L, is given by the expression:Open InformationUSER DESCRIPTION 9 ( 20 )EAB/RNR/TG Petter Edström +46858533195 66/1553-HSC 103 12/4 UenEAB/RNR/TGC (Lennart Blixt) 2002-09-24 APrepared (also subject responsible if other) NoApproved Checked Date Rev ReferenceEL = BSTXPWR - rxlev_dlBSTXPWR is the base station output power (at the reference point used byLocating) on all frequencies except the BCCH frequency. It is defined persubcell. If the serving cell is an UL subcell and the currently used channel is onthe BCCH frequency, BSTXPWR is replaced by BSPWR in the expression.BSPWR is the base station output power on the BCCH frequency at thelocating reference point. rxlev_dl (see GSM Technical Specification 05.08) isthe received filtered downlink signal strength value in dBm.If parameter TAOL is set to its maximum value the criterion for changingsubcells is only controlled by the path loss threshold LOL. If parameter LOL isset to its maximum value the criterion for changing subcells is only controlledby the timing advance threshold TAOL. If LOL and TAOL are set to valuessomewhere between their maximum and minimum values, the criterion iscontrolled by both thresholds as described above.4.2.2 OL/UL subcell change, Subcell Load Distribution activeIn every Subcell Load Distribution (SCLD) interval (specified by parameterSCLDTIMEINT) the traffic load in the UL subcells that are active for SubcellLoad Distribution are examined. Each time a maximum number of 16 cells canbe examined, the remaining cells are examined during the next SCLD interval.If the percentage of the total number of idle full rate capable TCHs in an ULsubcell is less than or equal to parameter SCLDLL and the timers of “subcellchange due to bad quality” or “subcell change due to too many intra-cellhandovers” are not activated for the OL subcell, then a subcell change fromthe UL subcell to the OL subcell will be requested, see figure 4. All HSCSD(main and on-demand) channels and all dedicated PDCHs are always countedas busy full rate TCH. On-demand PDCHs are regarded as either idle orbusy depending on the setting of the Exchange property GPRSPRIOUserDescription, Channel Administration.Half rate channels are never counted. Only mobile stations that fulfil thefollowing conditions for LOL and TAOL are allowed to change subcellsL < LOL andta < TAOLMobile stations which have the lowest path loss are selected first. The numberof mobile stations, within a cell, in one SCLD interval, that the BSC will tryto move is given by:int (SCLDLL x (#TCHs )total ) - (#TCHs )idle + 1where int means rounded to the lower integer, #TCHs means the number oftraffic channels, idle or total, in the UL subcell. However, in order to restrictthe network disturbance, the BSC never tries to move more than three mobilestations.Open InformationUSER DESCRIPTION 10 ( 20 )EAB/RNR/TG Petter Edström +46858533195 66/1553-HSC 103 12/4 UenEAB/RNR/TGC (Lennart Blixt) 2002-09-24 APrepared (also subject responsible if other) NoApproved Checked Date Rev ReferenceEAs an example, an UL subcell has a total of 10 TCH and its SCLDLL is set at35%. During a SCLD interval, it has only 1 idle TCH and there is no timeractivated for its OL subcell, therefore, the above criterion are fulfilled and asubcell change, from UL to OL subcell, is requested. From the equation, thenumber of mobiles that will be moved, is int (35% x 10) - 1 + 1 (i.e. 3). Theequation is aiming to return the number of idle TCHs in the UL subcell justabove the SCLDLL limit, i.e. moving the minimum number of mobiles.If the percentage of the total number of idle full rate capable TCHs in the ULsubcell is greater than SCLDUL and the timers of “subcell change due tobad quality” or “subcell change due to too many intra-cell handovers” arenot activated for the UL, a subcell change from the OL subcell to the ULsubcell will be requested. In this case there is no path loss or timing advanceconditions that have to be fulfilled. The mobile stations with the highest pathloss are selected first. The number of mobile stations that the BSC will tryto move is given by:(#TCHs )idle - int (SCLDUL x (#TCHs )total )where int means rounded to the lower integer and the TCHs referred to arethose in the UL subcell. However, the BSC never tries to move more than threemobile stations, within a cell, per SCLD interval.As an example, an UL subcell has a total of 10 TCH and its SCLDUL is setat 55%. During a SCLD interval, it has 9 idle TCH and there is no timeractivated for its UL subcell, therefore, the above criterion are fulfilled and asubcell change, from OL to UL subcell, is requested. From the equation, thenumber of mobiles that will be moved, is 9 - int (55% x 10) (i.e. 4). However, inorder to minimise network disturbance, the BSC will only try to move 3 duringthis interval. The equation is aiming to return the number of idle TCHs in theUL subcell just below the SCLDUL limit, i.e. moving the minimum numberof mobiles, while not exceeding 3.If the number of idle TCHs required for OL to UL subcell change is just onemore than the number of idle TCHs required for UL to OL subcell change therequired number for OL to UL change is automatically increased by one. Thisis to prevent mobile stations from being repeatedly moved back and forthbetween the OL and UL subcell.Open InformationUSER DESCRIPTION 11 ( 20 )EAB/RNR/TG Petter Edström +46858533195 66/1553-HSC 103 12/4 UenEAB/RNR/TGC (Lennart Blixt) 2002-09-24 APrepared (also subject responsible if other) NoApproved Checked Date Rev ReferenceEPercentageof activeTCHsPercentageof idleTCHsSCLDULSCLDLL No subcell change.Subcell change UL to OLSubcell change OL to ULFigure 4 Subcell Load Distribution. When the percentage of idle full ratecapable TCHs in the UL subcell equals or falls below SCLDLL subcell changesfrom the UL to the OL subcell are initiated. When the same percentage exceedsSCLDUL then subcell changes from the OL to the UL subcell are initiated. Inbetween no subcell changes are initiated.Apart from OL to UL subcell change due to Subcell Load Distribution the mobilestation can also be requested to move to the UL subcell because of excessivetiming advance and/or path loss. The following conditions are used:L ≥ LOL + LOLHYST orta ≥ TAOL + TAOLHYSTThis condition is checked by Locating every SACCH period.No SDCCH should be configured in OL subcell, which makes use of SubcellLoad Distribution, since it is only applicable to traffic channels. With SCLDactivated, only assignment to UL is allowed, which makes SDCCH in the OLsubcell inaccessible.Full rate connections as well as half rate connections can be moved by SubcellLoad Distribution. High Speed Circuit Switched Data (HSCSD) connectionscan not be moved, but will remain in the UL subcell.Open InformationUSER DESCRIPTION 12 ( 20 )EAB/RNR/TG Petter Edström +46858533195 66/1553-HSC 103 12/4 UenEAB/RNR/TGC (Lennart Blixt) 2002-09-24 APrepared (also subject responsible if other) NoApproved Checked Date Rev ReferenceENote that subcell changes that are due to Subcell Load Distribution do notconsider the TINIT timer. However, if the parameters SCLDLL and SCLDULare set appropriately, they will work as an hysteresis for subcell changes dueto subcell load distribution.4.2.3 Handover and assignment to another cellEven if the preferred subcell is OL, in some cases operators would need notto allow direct inter-cell handovers (and assignments to other cells) to the OLsubcell. This is implemented using two new CHAP values (9,10) that arebased on CHAP 0 and CHAP 5, as they represent the most common casesto be considered - BCCH in UL and no Immediate Assignment on TCH.The difference in the CHAPs are for the selection types handling inter-cellhandovers, Assignment to worse cell and Assignment to better cell, in casesof preferred subcell OL. Using these CHAPs, the operator could choose thatin these cases the UL subcell will always be selected (CHAP 9) or always beprioritised (CHAP 10), see User Description, Channel Administration.4.2.4 OL subcell as a last resortNormally, if the UL subcell is preferred and there are no idle channels in theUL subcell, a channel allocation will fail. However, in the event of congestionin the UL subcell it is possible to allocate a channel in the OL subcell as alast resort. This strategy can be chosen through the Channel Administrationfeature by selecting the Channel Allocation Profile 5, 6, 8 or 10 (see UserDescription, Channel Administration).4.2.5 Subcell change due to bad quality and intra-cell handoverIf the criterion for intra-cell handover is fulfilled and the maximum number ofallowed consecutive intra-cell handovers have been executed, a subcell changecan requested to the other subcell, both from the underlaid subcell to theoverlaid subcell and vice versa, based on congestion and the setting of CHAPvalues (see User Description, Intra Cell Handover). At this type of subcellchange, a timer will be set to prevent an immediate subcell change back tothe old subcell. The timer is set to the value of TIHO and the total time duringwhich subcell change will be inhibited becomes TINIT + TIHO.Note that an intra-cell handover can result in a request for a subcell changeafter TINIT, but before TINIT + TIHO has expired.4.2.6 Locating correctionsThe OL subcell and the UL subcell may have different output power. If themobile station is connected to the OL subcell, serving cell measurements arecompensated for the difference in output power between the subcells. This isdone in order to have the same handover borders in the OL subcell as the onesin the UL subcell, see also User Description, Locating.4.2.7 TSC considerationsThe channels in the OL subcell can be assigned a different Training SequenceCode (TSC) from the ones in the UL subcell. The TSC is used by the equaliserOpen InformationUSER DESCRIPTION 13 ( 20 )EAB/RNR/TG Petter Edström +46858533195 66/1553-HSC 103 12/4 UenEAB/RNR/TGC (Lennart Blixt) 2002-09-24 APrepared (also subject responsible if other) NoApproved Checked Date Rev ReferenceEto create a channel model. When configuring an OL subcell network on top ofan existing UL network, it is advisable to reassign the TSCs for the OL subcellsaccording to the OL subcell frequency re-use pattern. Otherwise co-channelsin the OL subcell network might obtain the same TSC, which could makeit difficult for the equalizer to distinguish between these co-channels. TheTraining Sequence Code is set with parameter TSC.4.3 GPRS/EGPRS ImpactsGPRS/EGPRS channels are only allocated in the UL subcell. The reason beingthat the GPRS/EGPRS MS performs cell change by itself, see User Description,GPRS/EGPRS Cell Reselection. Therefore, the system is not controlling thecell change and cannot distribute GPRS/EGPRS MSs between subcells.4.4 Related CountersThe following counters are specifically related to overlaid and underlaidsubcells.Table 1 Statistical Counters for Handover between Overlaid and UnderlaidSubcells (Object Types = CELEVENTS)Counters DescriptionHOAATUL Handover Attempts to Underlaid SubcellHOSUCUL Sucessful Handover Attempts to Underlaid SubcellHOAATOL Handover Attempts to Overlaid SubcellHOSUCOL Sucessful Handover Attempts to Overlaid SubcellIn many situations, e.g. congestion, allocation attempts, connectionestablishment, dropped connections, and etc, there is a corresponding counterfor overlaid to underlaid. For further details, please refer to User Description,Radio Network Statistics.If a cell is not structured in OL/UL subcell, the OL subcell counters are not usedand all the measurements are only done in the UL subcell counters. In the caseof OL/UL subcell, incrementing or decrementing of UL subcell counters, dueto an event in the UL subcell is always done independent of the OL subcellcounters. However, depending on the specific counter pair, incrementing ordecrementing of overlaid subcell counter, due to an event, may or may notaffect the UL subcell counters.4.5 Main changes in Ericsson GSM System R10 / BSS R10Handovers to neighbouring cells’ overlaid subcells are made possibleindependent of the setting of the CS parameter.Two additional CHAP values (9, 10) are introduced.Open InformationUSER DESCRIPTION 14 ( 20 )EAB/RNR/TG Petter Edström +46858533195 66/1553-HSC 103 12/4 UenEAB/RNR/TGC (Lennart Blixt) 2002-09-24 APrepared (also subject responsible if other) NoApproved Checked Date Rev ReferenceEIt is possible to configure different frequency bands in different subcells.The value range of the LOL parameter is extended (0–200).5 Engineering guidelines5.1 Subcell Load Distribution Active5.1.1 Dimensioning of the OL subcellThe difficulty of dimensioning is reduced, when Subcell Load Distribution isactivated (see chapter 5.2.1). This is primarily because the load distributioncan now be controlled by the SCLD parameters, i.e. SCLDLL and SCLDUL,making the setting of TA and pathloss criterion incritical. The cellborder for theOL subcell could be made to coincide with the cellborder for the UL subcellby setting the pathloss and timing advance criteria to the maximum values.Using this setting, the dimensioning is based primarily on the number of TRXsin the OL and UL subcell respectively. There is no trunking loss, as would bethe case, for basic OL/UL subcell, if the OL subcell covered a geographicallysmaller area than the UL subcell.5.1.2 Using BTS and MS Power controlSince the mobiles in the OL subcell generally are closer to the site, it isbeneficial to use MS and BTS power control to reduce interference. Whensubcell load distribution is used, and a subcell change from UL to OL isinitiated, the mobiles closest to the site (lowest pathloss) are moved first, i.e.the mobiles where power control have most impact.One way to use OL/UL and subcell load distribution is to set SCLDLL andSCLDUL to low values, e.g. 20 % and 10 % respectively. The OL subcell isused only when the UL subcell is almost congested, thus taking care of thepeak load. Because of the high load in the cell, the chance of finding mobilesclose to the site is then higher than if the load had been low. Using this settingtogether with power control makes it possible to have an even tighter reuse inthe OL subcell layer.5.1.3 OL/UL subcells together with frequency hoppingThe gain of frequency hopping is reduced with OL/UL subcells. This is becauseof the reduced frequency hopping gain when the available frequencies aredivided between the OL and UL subcell. With Subcell Load Distribution active,frequency hopping can be used, in the following way, assuming that the BCCHplan is good. The OL subcell should have the same cellborder as the ULsubcell. A majority of the available frequencies for the cell are placed in theOL subcell. With this configuration the hopping loss will be minimised whensynthesizer hopping is used in the OL subcell. The OL subcell generally takestraffic closer to the site, which means that BTS and MS power control will havea better effect than if no OL/UL structure were used. The BCCH carrier can notOpen InformationUSER DESCRIPTION 15 ( 20 )EAB/RNR/TG Petter Edström +46858533195 66/1553-HSC 103 12/4 UenEAB/RNR/TGC (Lennart Blixt) 2002-09-24 APrepared (also subject responsible if other) NoApproved Checked Date Rev ReferenceEbe downregulated, but since the UL subcell generally take traffic closer to thecellborder BTS power control would have had little effect.When Subcell Load Distribution is active in the target cell, it is not possible toperform a handover from an OL subcell to another OL subcell (see chapter4.2.3). It is therefore important to dimension the UL subcell, so that it can handleincoming handovers. Also, it is recommended to use Channel Allocation Profile5 or 6 (CHAP = 5 or 6, see chapter 4.2.4) so that the OL subcell can be usedas a last resort if there is congestion in the UL subcell.The possible interactionwith the feature BCCH in Overlaid Subcell introduces new ways of handling theOL/UL feature settings (see User Description, BCCH in Overlaid Subcell).5.2 Subcell Load Distribution Inactive5.2.1 Dimensioning of the OL subcellIn order to protect frequencies in the OL subcell from a low C/I the OL subcellmust be restricted in size. The reduced size will increase C/I in the followingmanner:1 The path loss between interfering cells and the OL subcell increases,i.e. the I part of C/I will decrease.2 The maximum path loss between the serving BTS and the MS in the OLsubcell will decrease, i.e. the C part of C/I will increase. However, in manysituations the BTS output power in the OL subcell must be reduced as wellin order not to cause downlink interference (cell A interfering cell B). Inthis case the downlink C is not increased but the improved C/I comes onlyas a result of a reduced I according to item 1.To determine how small the OL subcell must be made in order to fulfil the C/Irequirements, predictions, using TEMS Cell Planner, or measurements, usingTEMS, may be performed. Normally the OL subcell border has to be moved atleast 5 dB from the original border. In an urban area where C/I fluctuates more,the OL subcell border must be moved even further.Naturally one cannot dimension the OL subcell from C/I considerations alone,one must also make sure that the OL subcell takes traffic. An OL subcell thathas to be made so small that it does not serve any traffic is just a waste ofcapacity. The ideal situation for OL/UL subcells to be applied is a cell wheremuch traffic is generated close to the site. In this case it will be possible to meetthe C/I as well as the traffic requirements.The size of the OL subcell and the number of the TRXs in the OL subcell shouldbe dimensioned in a way that the OL subcell gets congested before the ULsubcell. This is because traffic can "spill over" from the OL subcell to the ULsubcell at congestion in the OL subcell.Note that the channels in the OL subcell will be allocated before the channelsin the UL subcell when subcell load distribution is not used. This means thatthe channels in the UL subcell will be saved for mobile stations that cannotuse the OL subcell.Open InformationUSER DESCRIPTION 16 ( 20 )EAB/RNR/TG Petter Edström +46858533195 66/1553-HSC 103 12/4 UenEAB/RNR/TGC (Lennart Blixt) 2002-09-24 APrepared (also subject responsible if other) NoApproved Checked Date Rev ReferenceE5.2.2 Path loss thresholdThe path loss threshold LOL is the most important threshold and should alwaysbe used. It guarantees a minimum level of received signal strength for the MSsin the OL subcell and will in most situations also restrict the size of the OLsubcell. In some cases also the timing advance threshold is required to restrictthe OL subcell size, see chapter 5.2.3.The following example illustrates how LOL can be determined:In an existing cell, one of the frequencies causes and suffers from co-channelinterference. It is believed that much of the traffic is generated close to the site.It is decided to split the cell into one OL/UL subcell pair and allocate the badfrequency to the OL subcell. Suppose, with reference to predictions usingTEMS Cell Planner, we wish to reduce BSTXPWR, from 42 dBm to 36 dBm andthat the OL subcell border is also to be moved 8 dB from the original border.Measurements with TEMS show that handovers between the UL subcell and itsneighbours occur at approximately - 90 dBm, which gives:LOL = 42 - ( - 90) - 8 = 124.The recommended value of LOLHYST is 2 dB (default setting is 3). Notethat the hysteresis corridor will be twice as big as the value of LOLHYST. IfLOLHYST = 2 dB the hysteresis corridor will become 4 dB wide.5.2.3 Timing advance thresholdOccasionally the topography of the cell is such that the path loss is particularlylow in certain parts of the cell, for example over water, see e.g.figure 3. Tomaintain the intended small size of the OL subcell even in such cases thereis the additional condition that the timing advance must not be greater thanTAOL in the OL subcell.The resolution of timing advance is one bit period. This means that oneunit of TAOL corresponds to about 550 m. A rough setting of TAOL can beobtained by measuring on a map. If a more accurate setting is desired, TEMSmeasurements of TA along the OL/UL border can be performed.The recommended value of TAOLHYST is 0. This could lead to ping-ponghandovers between the UL and the OL subcell in a small region where theta calculation might be ambiguous. If the ta threshold is used only in smallparts of the cell this will create few problems. If TAOLHYST is set to 1, thehysteresis corridor would become 1 km wide, a value which in many situationswould be too large.5.2.4 OL/UL subcells together with frequency hoppingThe gain of frequency hopping is reduced with OL/UL subcells. The reasonfor this is that when splitting frequencies into OL/UL subcells, the amount offrequencies in each subcell will be reduced. This means that the amount offrequencies over which frequency hopping can be performed is decreased andthus that the gain of frequency hopping is reduced. Frequency hopping is aOpen InformationUSER DESCRIPTION 17 ( 20 )EAB/RNR/TG Petter Edström +46858533195 66/1553-HSC 103 12/4 UenEAB/RNR/TGC (Lennart Blixt) 2002-09-24 APrepared (also subject responsible if other) NoApproved Checked Date Rev ReferenceEvery important feature providing frequency diversity and interference averaging,see User Description, Frequency Hopping. If the operator has access to a widefrequency band (about 15 MHz or more) the benefits of frequency hopping canbe reaped in both subcells, and a combination of OL/UL subcells and frequencyhopping may be employed.5.2.5 Trunking considerationsWithin a cellular network covered by OL subcells, it is possible to use theavailable channels in both the OL and the UL subcells. However, in thoseparts of the cellular network, which are covered by the UL subcells but not bythe OL subcells, only the channels in the UL subcells are accessible. Thus,trunking efficiency will be reduced in that part of the UL subcells not coveredby the OL subcells. In the area covered by both subcells, there is no trunkingloss, since all channels can be used.The trunking loss can be reduced by allowing channel allocation in OL whenthere is congestion in UL, even if the pathloss and/or timing advance criteriaare not fulfilled for a channel allocation in OL. This is achieved by the featureChannel Administration (see User Description, Channel Administration).5.3 High Capacity NetworksIn a 1/1 or 1/3 (Frequency Load Planning, FLP) networks it is recommended touse OL/UL. As syntesiser hopping must be used in FLP networks, the BCCHfrequency and TCH frequencies are normally placed in different channelgroups. By allocating the TCH channel group to the OL subcell, statistics will becollected separately for the BCCH frequency and the TCH frequencies. This isvaluable when evaluating the performance of a cell.The OL/UL subcell feature will also give an effective tool to distribute the trafficbetween the channel groups. The traffic distribution can be controlled by eitherlimiting the size of the OL subcell with the settings of TAOL and LOL and/or byusing subcell load distribution by settingSCLDLL and SCLDUL. If the BCCHreuse is very tight then the BCCH channels should only to be used as asalvation channel. To achieve this TAOL and LOL should be set to maximumand high values on SCLDLL and SCLDUL should be used. If the BCCH reuseis more relaxed thenSCLDLL and SCLDUL should be set to low values. Thiswill result in that the TCH channel group will only take traffic when the trafficlimit is exceeded in the BCCH channel group. The traffic which will be directedto the OL subcell will be the traffic nearest to the BTS and this will lead to thatthe BCCH channel group will be prioritised at the cell border.It is also recommended to allow channel allocation in OL when UL is congested,(see User Description, Channel Administration), only if the OL subcell is large.Open InformationUSER DESCRIPTION 18 ( 20 )EAB/RNR/TG Petter Edström +46858533195 66/1553-HSC 103 12/4 UenEAB/RNR/TGC (Lennart Blixt) 2002-09-24 APrepared (also subject responsible if other) NoApproved Checked Date Rev ReferenceE6 Parameters6.1 Main controlling parametersSCTYPE identifies the subcell type, OL or UL, within a cell.LOL is the path loss threshold for the serving area of the OL subcell within acell. This parameter is set per OL subcell.TAOL is the timing advance threshold for the serving area of the OL subcellwithin a cell. This parameter is set per OL subcell.LOLHYST is the path loss hysteresis for the serving area of the OL subcellwithin a cell. This parameter is set per OL subcell.TAOLHYST is the timing advance hysteresis for the serving area of the OLsubcell within a cell. This parameter is set per OL subcell.The OL/UL subcell structure can be created per cell.6.2 Additional parametersBSTXPWR is the base station output power at the reference point forthe locating algorithm (see User Description, Locating) on the non-BCCHfrequencies within a cell. This parameter is set per subcell.BSPWR is the base station output power at the reference point for the locatingalgorithm (see User Description, Locating) on the BCCH frequency within acell. This parameter is set per cell.TSC is the Training Sequence Code for the specified subcell within a cell. Thisparameter is set per subcell, but it is not available for cells without an OL/ULsubcell structure.CS indicates if a cell shares the same site as its neighbour. This parameteris set per neighbouring cell relation.MAXIHO is the maximum number of consecutive intra-cell handovers. Thisparameter is set per subcell.PTIMBQ is the penalty time of the abandoned cell, when bad quality handoveroccurs. This parameter is set per cell.TINIT is the minimum time before handover is allowed on an initial call or afterhandover. This parameter is set per BSC.TIHO is the intra-cell handover inhibition timer, during which intra-cell handoveris not allowed. This parameter is set per subcell.Open InformationUSER DESCRIPTION 19 ( 20 )EAB/RNR/TG Petter Edström +46858533195 66/1553-HSC 103 12/4 UenEAB/RNR/TGC (Lennart Blixt) 2002-09-24 APrepared (also subject responsible if other) NoApproved Checked Date Rev ReferenceE6.3 Parameters controlling Dynamic OL/UL SubcellsSCLD is used to activate subcell load distribution in a cell. It is set per cell.SCLDTIMEINT defines the cycle time of the subcell load monitoring. It is setper BSC and can only be set in multiples of 100 ms.SCLDLL defines the percentage of idle full rate capable TCHs in the UL subcellat or below which subcell change from the UL subcell to the OL subcell isattempted. It is set per cell.SCLDUL defines the percentage of idle full rate capable TCHs in the ULsubcell above which subcell change from the OL subcell to the UL subcell isattempted. It is set per cell.GPRSPRIO is a BSC Exchange property that controls whether on-demandPDCHs shall be treated as idle or busy when calculating the percentage of idlechannels (see the entire parameter desciption in User Description, ChannelAdministration).6.4 Value ranges and default valuesTable 2 Controlling parametersParameternameDefault value RecommendedvalueValue range UnitSCTYPE - UL, OLLOL - 0 to 200 dBTAOL - 0 to 61 bit periodsLOLHYST 3 2 0 to 63 dBTAOLHYST 0 0 0 to 61 bit periodsBSTXPWR - 0 to 80 dBmBSPWR - 0 to 80 dBmTSC BCC (1) 0 to 7CS NO YES, NOMAXIHO 3 FH: 2, no FH: 3 0 to 15PTIMBQ 10 15 0 to 600 dBTINIT 10 10 0 to 120 SACCHperiodTIHO 10 10 0 to 60 sec(1) Initially, the TSC is defined by the BCC in the BSIC for the cell.Parameters controlling Dynamic OL/UL SubcellsOpen InformationUSER DESCRIPTION 20 ( 20 )EAB/RNR/TG Petter Edström +46858533195 66/1553-HSC 103 12/4 UenEAB/RNR/TGC (Lennart Blixt) 2002-09-24 APrepared (also subject responsible if other) NoApproved Checked Date Rev ReferenceETable 3 Parameters controlling Dynamic OL/UL SubcellsParameternameDefaultvalueRecommendedvalueValue range UnitSCLD OFF ON, OFFSCLDTIMEINT 100 100 to 1000 msSCLDLL 20 0 to 99 %SCLDUL 30 0 to 100 %7 References1 User Description, Locating2 User Description, Channel Administration3 GSM Technical Specification 05.084 User Description, Assignment to Other Cell5 User Description, Intra Cell Handover6 User Description, Frequency Hopping7 User Description, Radio Network Statistics8 User Description, Dynamic BTS Power Control9 User Description, Dynamic MS Power Control10 User Description, GPRS/EGPRS Cell Reselection11 User Description, BCCH in Overlaid Subcell12 User Description, Multi Band Cell

翻译手件

目录
1简介.. 3
2词汇.. 4
2.1概念.. 4
3能力.. 5
3.1增加的交通容量.. 5
3.2动态OL/UL子小区.. 6
3.3 BCCH在Overlaid Subcell,.. 7
3.4多带小区.. 7
4技术描述.. 8
4.1纲要.. 8
4.2算法.. 8
4.2.1不激活SCLD下的OL/UL子小区间的变化.. 8
4.2.2 激活SCLD情况下OL/UL子小区间的变化阿.. 9
4.2.3 切换和支配到另一个小区.. 11
4.2.4 OL 子小区作为最后的措施.. 12
4.2.5 由质差和小区内切引起的子小区切换.. 12
4.2.6 定位更正.. 12
4.2.7 TSC considerations. 12
4.3 GPRS/EGPRS的影响.. 12
4.4 相关计数器.. 13
4.5 Main changes in Ericsson GSM System R10 / BSS R10. 13
5工程指南.. 14
5.1 激活SCLD. 14
5.1.1 OL子小区的尺寸.. 14
5.1.2 启用BTS和移动台的功率控制.. 14
5.1.3 在OL/UL子小区中使用跳频.. 14
5.2 不激活SCLD. 15
5.2.1 OL子小区的范围限制.. 15
5.2.2 路径损耗.. 15
5.2.3 时间提前量.. 16
5.2.4 OL/UL子小区齐开跳频.. 16
5.2.5 中继问题.. 16
5.3 高容量网络.. 16
6 参数.. 17
6.1 主控参数.. 17
6.2附加参数.. 17
6.3 OL/UL小区动态控制参数.. 18
6.4参数值列表及其默认值.. 18
7. 参考资料.. 19









































1简介
蜂窝移动网的传输容量会随着频点的增加或频率复用程度的下降而增长。现在有一种途径通过另外一种频率复用的方法,使用现有的站点,在现有方法的基础上使用更为高效的频率复用方式。
这些小区的覆盖范围将被限制,为了不导致同频及邻频干扰而缩短复用距离。他们被命名为 overlaid(OL) 子小区,而原来的小区,现在与其OL子小区相对应,被称为 underlaid(UL) 子小区。每个小区含有更多的频点,这样增加了网络的容量。



















2词汇
2.1概念
SCLD 考虑到UL小区容量负荷问题而建立的基于一种有阈值限制的OL/UL子小区切换的负荷指配机制。
2.2简称和首字母缩略词
BCC基站色码
BCCH广播控制通道
BSIC基站识别码
GPRS通用分组无线业务
HSCSD高速电路交换数据业务
OL Overlaid (subcell)
PDCH分组数据信道
SACCH慢速随路信道
SCLD子小区负荷分配
SDCCH独立控制通道
TA时间提前量
TEMS Ericsson GSM测量和系统优化工具
TEMS Cell Planner Ericsson Cell Planning Prediction Tool
TRX 收发信机
TSC 训练序列码
UL Underlaid (subcell)






3能力
3.1增加的交通容量
吸收站点附近的话务至OL子小区是OL/UL子小区方案的主旨, 而接近小区边界的话务则被吸收到UL子小区。应用这种方式控制话务,频率在OL subcell能被复用得更好。

例子
用下面的例子说明OL/UL subcell功能的基本应用。 考虑到位置相邻的两个小区,小区A包含频率f1和f2,小区B包含频率f3和f4。因为小区A的话务量高。为了解决容量问题,f4亦被分配到小区A。 然而,由于小区A及小区B为邻区,这样子将在A和B的小区边界产生干扰问题。 在表1,实线箭头表示载波信号,虚线箭头表示一个干扰的信号。 图中仅有由小区B导致的下行干扰信号。








图1
使用发f4频率的移动台在小区边界附近受到下行同频干扰的过程。
OL/UL 小区结构可以被用来解决干扰问题。如图二所示,小区A被定义为OL/UL小区,f4被指配到OL子小区,f1, f2被指配到UL子小区。小区A的频点数并没有改变,依然为三个。然而f4被指配到OL子小区以后,根据C/!有所改善的结果,使用f4的通路受到了较低的下行同频干扰。


图2 移动台使用f4的地方限于OL子小区,OL子小区收到的同频干扰较小。

OL/UL子小区功能可用于增加全网的话务容量。因此,OL子小区可运用于整个网络的每普通的小区。由于OL子小区的覆盖范围小,因此相对于UL小区来说,它使用更为紧凑的频率复用机制。 例如:3/9用于OL,4/12用于UL。这样,每个小区能使用更多的频率,全网的容量也相应增加。
OL子小区被推荐用于整个网络的一般小区。

3.2动态OL/UL子小区
在普通的OL/UL子小区中,即使UL子小区还有剩余很大的空闲容量,在OL子小区服务区的移动台也会接入OL子小区。一旦这个区域的OL子小区频率(更紧凑的复用方式和低发射功率)比UL子小区频率更容易受到干扰,这种机制显得不那么适用。
爱立信GSM系统提出了动态OL/UL子小区功能来解决这个问题。目标是保持UL子小区的话务量在一定的水平上。只有在UL子小区的话务量超过某一确定的门限时,才切换至OL子小区。其次,移动台在基站附近接入OL子小区,这样也使动态功率控制更加有效,以及受到更小的干扰。

3.3 BCCH在Overlaid Subcell,
由于BCCH载波不开启调频,不使用任何频率分集方式,或不像调频那样有干扰分集增益,因此BCCH载波绝不应该使用低强度的信号。BCCH载波使用低强度信号会导致坏的网络性能及有可能引致掉话。
如果将动态OL/UL子小区和跳频一起使用,再加上Overlaid子小区的BCCH特性,便能在这种高效复用的网络中增加容量和提高质量,移动台则能够通过低路径损耗接入BCCH载波。这样确保了BCCH载波频率受到低的话务干扰以及BCCH频点规划能被更有效地复用。因此BCCH可被在规划以便在忙时才承载话务。这样能很好地利用到BCCH频率去解决话务问题。Underlaid子小区的跳频信道在更频繁使用BCCH频率时关闭,这样通话质量的提高取决于TCH跳频信道。这将允许更多话务的接入。
注意:Overlaid子小区的BCCH仍覆盖整个小区,即使使用参数限制了TCH和BCCH载波频率的覆盖。

3.4多带小区
他允许在同一种子小区架构之下将不同的频率基带配置到不同的子小区,其目的是建立一个更加和谐的网络。(参见用户描述,多带小区)。






















4技术描述
4.1纲要
OL和UL子小区共享一条共同的广播控制信道(BCCH),此BCCH位于UL子小区。
独立控制信道(SDCCHs)在OL和UL subcells也可能会被定义,但直接分配只能指向UL子小区。如果子小区SCLD被激活, SDCCHs就只能在UL子小区中被定义。 然而,这种情况在BCCH被使用于Overlaid子小区时不成立。 (参见用户描述, Overlaid/Underlaid Subcells)。
有路径损耗门限和时间提前量门限作为维护Ol subcell的限制服务区的标准。
而且,相对于UL子小区,BTS的输出功率在OL子小区中可设置为不同的值,使之降低所受到的干扰。动态OL/UL功能能在OL和UL子小区中控制话务的分配,它遵循的规则是:当UL子小区的话务量超过一定门限值时才使用OL子小区。但有一点例外,当移动台足够靠近基站时,将从UL子小区切换至OL子小区。


4.2算法
4.2.1不激活SCLD下的OL/UL子小区间的变化
OL子小区服务区域的路径损耗阈值LOL对应的OL子小区服务区的路径损耗滞后值LOLHYST,以及OL子小区服务区的时间提前量阈值TAOL对应的OL子小区服务区的时间提前量滞后值TAOLHYST。定义了OL子小区的服务区和控制了OL/UL子小区变化的定位算法(详见User Description, Locating)
定位算法每个SACCH的周期都会评估子小区间切换的条件,定位算法还会对子小区切换请求的执行与否做出决定。小区内子小区的切换条件遵循:从UL到OL。
UL切换至OL:下行路径干扰和时间提前量满足下列条件:
L ≤OL -LOLHYST and
ta < TAOL -AOLHYST


图3左:UL切换至OL,右:OL切换至UL。

OL切换至UL,L和TA需满足下列条件:
L > LOL + LOLHYST or
ta ≥AOL + TAOLHYST
下行路径损耗L表达为:
L = BSTXPWR - rxlev_dl

非控制信道基站有效功率BSTXPWR被定义于每个子小区。当服务小区是UL子小区且使用BCCH载波的TCH进行通话时,BSTXPWR将由BSPWR代替。控制信道基站有效功率BSPWR是定位的参数,下行信号接收电平rxlev_dl的单位为dBm。
如TAOL被设置为最大值,那么控制子小区间的变化只由路径损耗门限值LOL来决定。如LOL被设置为最大值,那么控制子小区间的变化只由路径损耗门限值TAOL来决定。如果LOL和TAOL都设置为中间值,控制子小区间变化的标准将由两个参数共同决定。

4.2.2 激活SCLD情况下OL/UL子小区间的变化阿
在每个小区负荷分配的周期时间内UL子小区的话务负担监控将被激活,以便SCLD进行验证。每个周期最大能够有16个小区被验证,而剩余的小区将在下一个周期时间得到验证。如果UL子小区中空闲全速率TCH信道所占的百分比小于或等于SCLDLL,以及至OL子小区的“质差切换”或“过多内切”的计时器未被激活时,从UL子小区至OL子小区的切换将被请求,见图4。所有的HSCSD和专用PDCH信道于全速TCH忙时将被计数。按需PDCH信道被设置为空闲或者工作状态将按照GPRSPRIO的交换机制来设定。
半速率信道不会被计数。移动台只有符合有关LOL和TAOL的下述条件时才会被允许切换。
L < LOL and
ta < TAOL
低路径损耗将被优先选择,小区内的那些移动台,在一个SCLD周期时间内,BSC会根据下列关系进行变动:
int (SCLDLL x (#TCHs )total ) - (#TCHs )idle + 1
int表示低于参数的整个部分,#TCH表示UL子小区中空闲或全部的传输信道的数量。然而,为了制约网络干扰,BSC不允许超过三个移动台的变化。
例如,一个UL子小区总共有十个TCH并把它的SCLDLL值设在35%。在一个SCLD周期内,只有一个空闲TCH而且OL子小区没有启动计时器,因此,子小区切换的标准将被执行,发生从UL到OL子小区的切换请求。从方程式得知,一些移动台会被切换,具体数字为int (35% x 10) - 1 + 1 (i.e. 3).这个公式的目的是为了让UL子小区的空闲TCH比例回复到SCLDLL以上的水平,切换会维持在总数尽量少的水平上。如果UL子小区的空闲TCH百分比大于SCLDUL,并且计算UL“质差”和“内切”的计时器未开启,切换请求将会是从OL子小区到UL子小区。这种情况下,路径损耗和时间提前量的条件并未被考虑在内。高路径损耗的小区将被优先选择。BSC依照以下公式决定被切换的移动台数量:
(#TCHs )idle - int (SCLDUL x (#TCHs )total )
Int表示低于括号内的所有值以及TCH归类到从属UL子小区。然而,BSC不会尝试在一个SCLD周期内在一个小区里切换超过三个移动台。
例如:UL子小区共有十个TCH并把SCLDUL设在55%。在一个SCLD周期内,有9个空闲TCH而且UL子小区没有激活的定时器,因此,基于此标准的OL向UL子小区的切换请求将被执行。被切换的移动台数目如下方程式:9 - int (55% x 10) (i.e. 4).然而,为了最小化网络的干扰,BSC只能在一个SCLD周期内移动三个移动台。执行公式的目的是为了使UL子小区的空闲TCH百分比降到SCLDUL以下。在小于3个的限制下移动最少的移动台。
如果OL至UL子小区所必需的空闲TCH数比UL至OL子小区的多一个,则OL至UL子小区改变所需的数量会自动增加一个。这是为了防止移动台在OL与UL子小区之间重复地来回切换。

图4 Subcell负荷分配。

当UL子小区的空闲全速率TCH百分比小于或等于SCLDLL时,开始发生从UL到OL子小区的切换。反之,当UL子小区的空闲全速率TCH百分比大于SCLDUL时,开始从OL至UL子小区的切换。当此百分比介于SCLDLL与SCLDUL之间时,不发生切换。
由SCLD导致的OL至UL小区的切换同时得受到时间提前量或路径损耗的影响。它遵从的条件:
L ≥ LOL + LOLHYST or
ta ≥ TAOL + TAOLHYST
这些条件在定位中每一个SACCH周期检查一次。
使用SCLD,OL子小区不会配置SDCCH信道,因为SDCCH只适用于传输信道,而激活SCLD,只会在UL子小区中配置传输信道。
全速率连接在SCLD机制下能像半速率连接那样地高效移动。HSCSD不能在其间转换,但仍能保留在UL子小区。
注意:基于SCLD的子小区变动不考虑TINIT计时器。然而,如果参数SCLDLL和SCLDUL设定得当,基于SCLD,转换时间依旧会有一个滞后余量
4.2.3 切换和支配到另一个小区
即使首选小区为OL,但在某些情况下也不会允许直接内切至OL的操作(并且支配到其他小区)。当UL的重新考虑的BCCH和非立即指配的TCH表示达到最大值时,增加两个基于CHAP 0和CHAP 5的新CHAP值。CHAP设定是为了区别内切的选择类型,在首选为OL子小区的情况下,指配到更差小区还是指配到更好小区。使用这些CHAP,系统会选择选定UL子小区(使用CHAP 9)或者是优先选择UL子小区,详见User Description, Channel Administration.


4.2.4 OL 子小区作为最后的措施
一般来说,如果UL子小区作为首选小区但其已没有空闲信道,信道指配将失败。然而,当UL小区发生拥塞时允许信道指配至OL小区以作为最后的措施。

4.2.5 由质差和小区内切引起的子小区切换
如果小区内切的标准被执行并达到最大连续小区内切数,将会请求切换到其他子小区,包括从UL子小区到OL子小区的变动以及从OL子小区到UL子小区的变动,基于拥塞及CHAP值的设置(详见 User Description, Intra Cell Handover)。这种类型的子小区变动,计时器会及时启动以防止短时间内的回切。计时器设为TIHO值,并且在TINIT+TIHO的时间内被禁止子小区的变动。
注意:小区的内切可能引起TINIT后子小区发出变动请求,但TINIT+TINO并未到时。

4.2.6 定位更正
OL和UL子小区能有不同的输出功率。如果移动台接入OL子小区,服务小区的大小会银子小区间不同的输出功率而各异。这样是为了位于同一小区的OL和UL子小区有同一个切换边界,详User Description, Locating.

4.2.7 TSC considerations
OL子小区的信道可被支配一个与UL子小区不同的训练序列码,用以区别OL和UL子小区,TSC通过平衡器创建一个新的信道模。当在现有的UL网络里配置OL子小区,根据OL子小区频率复用方式将TCS配置到OL子小区。否则OL子小区的同频信道会得到相同的TSC,这样会使均衡器难以分辨这些同频信道的所属,训练序列码被设置为参数TSC。


4.3 GPRS/EGPRS的影响
GPRS/EGPRS信道只被分配到UL子小区。原因是GPRS/EGPRS移动台自身执行小区变动。详见User Description, GPRS/EGPRS Cell Reselection.因此,系统不能控制小区变动和不能在子小区间分配GPRS/EGPRS移动台。



4.4 相关计数器
以下是关于UL/OL子小区的特定相关计数器
Table 1 Statistical Counters for Handover between Overlaid and Underlaid
Subcells (Object Types = CELEVENTS)

Counters
Description
HOAATUL
Handover Attempts to Underlaid Subcell
HOSUCUL
Sucessful Handover Attempts to Underlaid Subcell
HOAATOL
Handover Attempts to Overlaid Subcell
HOSUCOL
Sucessful Handover Attempts to Overlaid Subcell

在很多情况下,即:拥塞,试图分配,连接确立,连接丢失,等等,都有相对应于OL到UL的相同的计数器。详见User Description, Radio Network Statistics.
如果小区没被设置未OL/UL子小区,意味着OL子小区的计数器未被使用,而所有数据也仅在UL小区计数器中被累计。万一在OL/UL子小区中,UL子小区计数器的值增加或减少,UL子小区的事件相对于OL子小区计数器总是独立的。然而,有赖于计数器的成对关系,OL子小区计数器的变化,或有或无地影响着UL子小区计数器。

4.5 Main changes in Ericsson GSM System R10 / BSS R10
鉴于CS参数的独立设置,切换至邻区的OL子小区是有可能的。推荐使用两个股价的CHAP值(CHAP 9, CHAP 10)
LOL取值范围相当大(0-200).可以将不同的频带配置到不同的子小区。
It is possible to configure different frequency bands in different subcells.
The value range of the LOL parameter is extended (0–200).



5工程指南
5.1 激活SCLD
5.1.1 OL子小区的尺寸
当SCLD被激活(见5.2.1)时,如何定小区间的连接地带是一个难题。它是主要的问题,因为负荷分配能被SCLD参数所控制。SCLDLL和SCLDUL,设置TA和路径损耗的标准inccritical。设定路径损耗和时间提前量标准为最大值,则OL子小区的边界能被设得与UL的一致。使用这些设定,链接地带主要基于OL和UL子小区各自的那些收发机。如果OL子小区的地理覆盖区域小于UL子小区,主要的覆盖区域将没有大的中继损耗。

5.1.2 启用BTS和移动台的功率控制
移动台接入OL子小区之后,一般都比较接近基站,这时候使用移动台和BTS的功率控制有利于减少干扰。当开启SCLD并开始从UL到OL的小区变动,越接近基站(越低的路径干扰),优先级越高,而且对移动台的功率控制就越有影响。
将SCLDLL和SCLDUL分别设为20%和10%是设置SCLD的一种方法。这时OL子小区只在UL子小区拥塞时使用,即吸收溢出的负荷。这是因为小区负荷高的时候,靠近基站的移动台发出的通话总比小区负荷低时的要多。使用此种设置,再加上功率控制,将使OL子小区层的复用更加高效。

5.1.3 在OL/UL子小区中使用跳频
OL/UL子小区中的跳频增益将会降低。这是因为OL和UL子小区的有效频率各归所有。跳频能在激活SCLD时使用,前提是BCCH频点状况良好。OL子小区应该有和UL共用的小区边界。大多数有效的频率被分配到OL子小区。这种情况下当合成器跳频被使用于OL子小区时跳频损耗将会最小化。OL子小区一般来说至吸收站点附近的话务,这样以为这BTS和移动台的功率控制将好于未使用OL/UL的情况。BCCH载波能被有效管理,但BTS功率控制在UL吸收的边界话务上讲几乎没有效果。
当目标小区开启子小区负荷分配功能,其OL子小区不能直接切换到其他小区的OL子小区。所以规划UL小区的覆盖范围非常重要,UL小区要接入所有的切换。同时推介设置CHAP值为5或6(CHAP=5 or 6, 见4.2.4)以便OL子小区能在UL子小区拥塞时使用。由于OL子小区关于BCCH的特点对其的影响,建议使用另一种OL/UL功能设置。
5.2 不激活SCLD
5.2.1 OL子小区的范围限制
为了保持OL子小区的频率处于低信噪比,OL小区的覆盖范围必须限制。以下是缩小覆盖范围换取C/I值的优点:
1 干扰小区与OL子小区间的路径损耗越大,这一部分导致的C/I越小,即噪音降低。
2 BTS与移动台之间的最大路径损耗将降低,信噪比中信号的强度将增强。然而,许多状况下BTS在OL子小区的输出功率必须降低以防导致对邻区的下行干扰。这种情况下下行信号可能没得到增强,但信噪比仍能因为噪音的降低而提高,根据第一点。
确定OL子小区的大小必须考虑到C/I的要求和可能发生的预期需要。可以使用 TEMS Cell Planner处理。一般来说,OL子小区的边界最少离原始边界有5dB的缓冲距离。在城市等信噪比变动频繁的区域,这个距离要设得更大。
OL子小区的大小不能只考虑信噪比,还得考虑OL承担的话务。OL子小区太小而吸收不了话务会浪费小区的容量。
OL子小区的大小和收发机的数量将决定OL子小区是否比UL子小区更早拥塞。这是因为话务在OL子小区拥塞时可以“溢出”至UL子小区。
注意:没有激活SCLD时OL子小区的信道将比UL的更早被分配。这意味着UL子小区的信道为不能使用OL子小区的移动台保留。


5.2.2 路径损耗
路径损耗LOL值是最重要的损耗值且会一直被使用。它通常限制着OL子小区的大小,以提供能让移动台正常通话的最低接收信号强度。许多情况下时间提前量也是限制小区大小的必要条件,见5.2.3.
以下举例说明LOL怎样应用:
在现有的小区中,会有那么一个频率受到或引起同频干扰。这是因为OL/UL子小区边界的设定不当和OL子小区的频率规划的不好导致基站附近产生太多话务。假如参考TEMS Cell Planner的预算分析,我们会降低BSTXPWR至42dBm到36dBm,以及OL子小区的边界可设为距原始边界8个dB。TEMS给出的邻区UL子小区间的切换发生在信号强度为-90dBm左右,即:
LOL = 42 - ( - 90) - 8 = 124.
推荐LOLHYST设置为2dB(默认值为3).
注意:滞后带的宽度是LOLHYST值的两倍。




5.2.3 时间提前量
在一些地理条件下,小区覆盖区域的路劲损耗特别小,比如水上传播,见图3.在这些情况下使用时间提前量对应的阈值TAOL作为限制OL小区大小的主要条件更为有效。
时间提前量的定义是一个小周期。表示一个单位的TAOL相当于550米,设定TAOL可以大致确定测量距离。如果想要精确的设定,可以执行TEMS沿OL/UL边界的TA。推荐的TAOLHYST值为0。TA计算不当会导致UL和OL子小区边界地区产生乒乓切换。是否设置TAOL只会在一小块地方产生小问题。,如果将TAOLHYST设为1,滞后带将有一公里的宽度,这在许多情况下显得太大了。

5.2.4 OL/UL子小区齐开跳频
由于为OL/UL子小区分配的频率会被其子小区再分配,所以OL/UL子小区的调频增益将会降低。也就是说能应用到跳频的频率数目减少。跳频是提供频率多样性和中和干扰的一种十分重要的功能,见User Description, Frequency Hopping。如果操作是接入一个有宽度的频带(15Mhz或更宽),两种子小区都能在跳频功能上受益匪浅。OL/UL和跳频功能也能被一起使用。

5.2.5 中继问题
在使用OL子小区覆盖的小区网络里,UL和OL子小区都能使用有效的频道。然而,在使用UL子小区而不是OL子小区覆盖的网络部分,只有UL子小区的信道才能被接入。这样子便减少了这部分的有效中继。在两种子小区都有覆盖的区域,一旦全部信道都被使用,中继将会是没有损耗的工作的。
中继损耗在UL拥塞继而信道指配到OL时会减少,即便路径损耗和/或时间提前量标准没有在配置到UL的信道中执行。这是信道管理的功能。(详见User Description, Channel Administration)。

5.3 高容量网络
在1/1或1/3(Frequency Load Planning,FLP)网络推荐使用OL/UL。,在FLP网络仲使用跳频,BCCH频点和TCH频点正常分配到不同的信道组。当TCH信道组被分配到OL子小区,会分别收集BCCH频率和TCH频率做出统计。这是很有用的小区系统评估。
OL/UL子小区功能还给我们提供了一个在信道组之间分担话务的有效工具。他通过设置参数TAOL和LOL确定OL子小区的大小,并且/或者使用SCLD,设置SCLDLL和SCLDUL。如果BCCH资源十分紧张,使用这种模式后将得到舒缓。要达到这种效果必须把TAOL和LOL设为最大并且将SCLDLL和SCLDUL设为较高的水平。假如BCCH资源复用程度不紧张,就把SCLDLL和SCLDUL设为较低的值,这样TCH信道组在超过BCCH载波最大负荷时会承担话务。基站附近的话务将被指向到OL子小区,这可以使BCCH信道组有限处理边界地区。
如果OL子小区比较大,在UL拥塞时推荐将信道指配至 OL子小区(见 User Description, Channel Administration)。

6 参数

6.1 主控参数

SCTYPE定义其子小区类型,OL或者是UL,相对于小区。

LOL是OL子小区服务区域的路径损耗阈值。对于每个OL子小区都要设置此参数。

TAOL是OL子小区服务区的时间提前量阈值。此参数被设置于每个OL小区数据当中。

LOLHYST为OL子小区服务区的路径损耗滞后值。此参数于每个OL子小区设置中。

TAOLHYST为OL子小区服务区的时间提前量滞后值。此参数设置于每个OL子小区之中。

6.2附加参数

BSTXPWR是为Locating算法服务的非控制信道基站有效发射功率(详见User Descripion, Locating),每个子小区都要设置此参数。

BSPWR是为Locating算法服务的控制信道基站有效功率(详见User Descripion, Locating),每个子小区都必需设置此参数。

TSC是小区中指定的子小区的训列码。于每个子小区设置,但对于非UL/OL结构的子小区无效。

CS指明小区是否共享于同站邻区。此参数被设置于邻区关系中。

MAXIHO为最大连续内切数。设置于每个子小区。

PTIMBQ是当质差切换发生时坏小区的惩罚值。

TINIT两次切换中的最小间隔时间。设置于每个BSC。

TIHO小区禁止内切计时器,在内切不被允许的时候生效。参数设置于每个子小区。
6.3 OL/UL小区动态控制参数
SCLD用来激活小区中的子小区负荷分配。此功能用于先至UL小区向OL小区过多的切换。参数设置于每个小区。

SCLDTIMEINT定义子小区负荷分配的周期时间。此参数设置于每个BSC且只能设置为100ms的倍数。此参数设置于每个BSC且只能设置为100ms的倍数。

SCLDLL定义UL子小区中空闲全速率TCH信道所占的百分比小于或等于此参数时,子小区将尝试从UL到OL的切换。此参数设置于每个小区。

SCLDUL定义当UL子小区中空闲全速率TCH信道所占百分比大于此参数时,OL子小区将试图切换到UL子小区。此参数设置于每个小区

GPRSPRIO是一中BSC交换机制:当有精确的空闲信道百分比的时候,控制信道是否会按需求将PDCH当做空闲或工作状态对待。

6.4参数值列表及其默认值
Table 2 控制参数

参数名
默认值
推荐值
取值范围
单位
SCTYPE


UL, OL

LOL


0 to 200
dB
TAOL


0 to 61
bit periods
LOLHYST
3
2
0 to 63
dB
TAOLHYST
0
0
0 to 61
bit periods
BSTXPWR


0 to 80
dBm
BSPWR


0 to 80
dBm
TSC
BCC (1)

0 to 7

CS
NO

YES, NO

MAXIHO
3
FH:2, no FH:3
0 to 15

PTIMBQ
10
15
0 to 600
dB
TINIT
10
10
0 to 120
SACCH period
TIHO
10
10
0 to 60
Sec
(1) Initially, the TSC is defined by the BCC in the BSIC for the cell.
Parameters controlling Dynamic OL/UL Subcells

Table 3 Parameters controlling Dynamic OL/UL Subcells

参数名称
默认值
推荐值
取值范围
单位
SCLD
OFF

ON, OFF

SCLDTIMEINT
100

100 to 1000
Ms
DSLDLL
20

0 to 99
%
SCLDUL
30

0 to 100
%

7. 参考资料

1 User Description, Locating
2 User Description, Channel Administration
3 GSM Technical Specification 05.08
4 User Description, Assignment to Other Cell
5 User Description, Intra Cell Handover
6 User Description, Frequency Hopping
7 User Description, Radio Network Statistics
8 User Description, Dynamic BTS Power Control
9 User Description, Dynamic MS Power Control
10 User Description, GPRS/EGPRS Cell Reselection
11 User Description, BCCH in Overlaid Subcell
12 User Description, Multi Band Cell

2008年12月19日星期五

无题

太阳在东方升起,
给世界带来了光明和温暖,
可就在他升起的地方
巨魔喷出的黑雾笼罩了大地
他用他有力的巨爪钳制住这里的每一寸土地
肆无忌惮地吮吸着大地的血液
大地愈加贫瘠
而巨魔的魔爪却愈加有力
时间逝去
西方的潮水载来了灭魔咒
巨魔恐惧了
于是,粉饰着他那丑陋的脸
为了遮蔽精灵的眼睛,
在空中密布了令人恐惧的乌云
为了腐蚀精灵的大脑
给大地喷洒下他那邪恶的酸雨
新的巴士底狱雄伟壮观
大陆的边缘满布荆棘
终于,地上的精灵被蒙蔽了
或,被欺骗了
他们任由咀虫爬满全身
恐惧弥漫着这个世界

2008年12月5日星期五

赵硕之

我爱赵硕之那只有楼下茶餐厅老板娘才能媲美的神乳。
如果天平的这边是赵硕之的乳房,那那边肯定是反革命的屌。

2008年12月2日星期二

我喜欢摘录

如果人的有限性被彻底化到了自身也被它参与的构成境域所构成的话,这有限性就不再是受限于客体世界的主体有限性;它也就绝非经验论所能说明、唯理论所能超越的了。人的日常生存形式,或与风俗、文化、言语、历史相牵连而生者,并不就是经验材料的集合,亦非这些材料与先天构架的相配合,而是一种本缘的发生和自维持的几微,为一切意义和理解的源头。
缘就是源,真正的缘也就是真源。

2008年11月29日星期六

你只知道玩乐,但世界已变了。
你只知道玩乐,但时代已变了。
你只知道玩乐,但周围的一切已变了。
但是,即便你不玩乐,它也会变。

文学的新生

创新思维的枯竭等于新生。
新体诗

米饭
还是
面条?

不要!
这个创举又毫不费力的让全体国人语文水平上了n个台阶,个个都是诗人已。
礈此,同理可证:
新体的礼仪——>大家都是文明人了。
新体的乐理——>大家都是音乐人了。
新体的体制——>大家都是自由人了。
新的蛋白质——>大家都是人造人了。

我是垢学痞子

最近,接受了一些为人所不齿的垢学。对于我这仲已被定性为“惰性物质”之人而言,垢学无疑是那么的适合。以至于有识之士皆言我物以类聚耳,没错,我就要当那物吧。
谬论学家,最近又有人送于我此“尊号”。实不敢当,像我如此苟活残喘之人,何以能为“家”,我连当人的资格都尚待考究,更不敢奢望当上“家”了,还是给“物”这般的雅号于我,起码我还觉得舒心快活。
有研究近代文学的学者抨击我,辱没了鲁迅。我要指出的是,我对鲁迅先生向来是很尊敬的,在心里的尊敬,并不像一些人,哦,是高人,那样地挂在嘴上。但我还是坚持我的观点:鲁迅先生是很好的镜子,但不是那建设的工具。
很多人想要民主自由,一辈子想着为全人类争取这与生俱来的权力,这是对的,没有错,我也曾是这个阵营的一份子,但是,人的特性决定了一切民主都是假民主、伪民主、被人操控的民主,你看到公投,却没看到他的局限性、趋向性、被操纵玩弄性;你看到公开审讯,却没看到假证据、假证人、甚至连法律都是假的。伪法律下的合法性审判是很有创意的。只要还有权利存在,权利的分配就不会公平。

鹳(2)

“别管我是谁,现在我要警告你的情况是,小心万海瑶。你爸爸已经被她控制了。”说完,电话就挂断了。
屈宁韫虽说是千金小姐,但作风一向果敢决断,并不像一般的掌上明珠那样娇滴滴的。她立马回了电话,但这个电话是再也没通过。他查了这个电话的归属地,结果是浙江义乌,浙江义乌!没错,父亲这几天这在那边洽谈业务。他再也忍不住,拨了父亲的号码。关机,晴天霹雳!屈宁韫何许人也,她很快镇静下来。
嗅觉十分敏锐的屈宁韫隐隐有一种坏的预感,他拿起话筒,又挂了一通电话,而这通电话的宿主是周文康,父亲屈颋最好的朋友。这周文康与屈家也可以算是世交,对屈宁韫的宠爱可谓是较她父亲有过之而无不及。电话通了,接通的铃声一声,两声,但是,并没有接听的迹象。难道?还容不得屈宁韫细想,电话铃声再次响了起来,“周文康”!!?没错,来电号码显示的就是周文康。
“小韫,这么晚了,什么事啊!”
“康叔,刚才来了一个奇怪的陌生电话,电话那头的意思是我父亲被胁持了,说完就挂掉了。之后我打了我爸的电话,电话是关机的,您知道,我爸爸的手机一般是不会关机的。我这么晚给电话您,就是想问问您怎么办。?”周文康是见惯大场面的人,自然不会让这种情况吓倒,但事情发生的这么的突然,他顿时脑子也是一片空白。
他故作镇定地打断屈宁韫的话,“据我所知,你的父亲为人正直诚信,并未与人结怨,只是有一次,他醉酒后说过,他和一个姓魏的有瓜葛,具体很么情况我也没有细问,这样吧,我叫人帮你查查。”屈宁韫自然是很感谢周文康,但她虽然也是精明能干之人,却不知道这藏隐于背后的大阴谋。
这一夜,屈宁韫根本就无法入睡,他很努力地想理清这其中的丝絮,但她却无法找到那个线头。翌日清晨,夏天的太阳总是出的格外的早,但电话响得更早,5点17分,没错,电话是周文康打来的。

2008年11月12日星期三

胡子、胡子、胡子、六毫四厘的胡子

每次剃胡子我都有新的发现,原来毛还可以这样长。
发现自己竟然有--络腮胡子。
剃完胡子总不爱清洁剃须刀。
剃胡子的时候总爱把自己与飞X浦广告里的人作比较。
结果总是觉得自己比较帅。
胡子总用加快生长速度的方法向我表示抗议。
终于,我让步了,让他长长那么一点。
后果不堪设想,原来胡民的力量丝毫不亚于人民啊。
嗯,我决定再次动用暴力机关,杀。
还有侥幸逃脱者?秋后算账。

2008年11月11日星期二

鹳(1)

夏末的夜晚总带着那么一丝凉意。面对着这渐长的黑夜,楼道那暗淡的灯光显得软弱无力。声控灯没法决定自己的命运,他能做得仅仅是听。
电话铃声划破了这寂静的夜空,她拿起话筒。她叫屈宁韫,屈氏家族企业的唯一继承人。电话那头的人叫魏锦生,说到这魏锦生,也是苦命的主,他家原有黄金万贯,而且是家里的第二代独苗,但因为父亲死得早,家里的财产早就被他的一位叔公给篡夺了。魏锦生的母亲因为克夫,也让他的叔公给霸占了。这其中的是是非非,且容以后细细叙来。
“你叫屈宁韫嘛?”
“是我,你是谁?”
“别管我是谁,现在我要警告你的情况是,小心万海瑶。你爸爸已经被她控制了。”说完,电话就挂断了。

2008年11月10日星期一

安全提示:腾讯公司提醒您警惕“QQ中奖”骗局。

奥巴马当选美国总统,俄罗斯送去的“贺礼”不是贺电而是导弹。
藏独分子威胁总理人身安全。
母鸡受惊过度,产下三聚氰胺宝宝。
林里的禽兽:敢跟我斗,看我怎么收拾你们!
到处都是最后通牒,唯独我,为什么没人恐吓我,难道世界机器的惯性到我这里愕然停止?我好悲哀,麻烦你们,给我个安全警告吧。我可是有质量的。

2008年11月9日星期日

Kong Moon Bus

晚上,提着一大堆用中秋提货卡换来的食粮,咒骂着超市黑心赚钱地上了公车。
这才发现,比起对超市的抱怨,这公车来的更加离谱。怎么个说法?其实,说实在的,我还得感谢公交车公司,给了我按摩院级的服务。这厮的车,迎你上来,挂低档,开始2/4拍子,臀部神经末梢开始麻痹,最后,急刹,完成一次舒经活络,强身健体的流程。
右前方的黑丝MM,似乎正无比享受这种欢愉。让我们使用倒叙的时间算法回到今天的6:00pm,想像到了吧,满车的沙丁鱼,随着波浪,起伏,波涛汹涌,没有一丝缝隙可钻的鱼群,♂型的,♀型的,还有畸形的。Oh~~Yeah, 愉悦程度应该不亚于此时那位吧。

2008年11月8日星期六

日本的图腾

很多的有袋动物,除了两种最大的袋鼠外,都有一个分叉的阴茎。也就是说,在阴茎的末端分成两个柱状物。海豚可以自由控制它们的阴茎,一般用来感觉底部的物体。藤壶相对于它们身长来说有最长的阴茎:长达它们体长的20倍。
藤壶是附着在海边岩石上的一簇簇灰白色、有石灰质外壳的小动物。它的形状有点象马的牙齿,所以生活在海边的人们常叫它“
马牙”。藤壶不但能附着在礁石上,而且能附着在船体上,任凭风吹浪打也冲刷不掉。藤壶在每一次脱皮之后,就要分泌出一种粘性的藤壶初生胶,这种胶含有多种生化成份和极强的粘合力,从而保证了它极强的吸附能力。
藤壶是雌雄同体,行异体受精。由于它们固着不能行动,在生殖期间,必须靠着能伸缩的细管,将精子送入别的藤壶中使卵受精。待卵受精后,经三、四个月孵化;此时,刚孵化出的小幼苗即脱离母体,但常必须过几个星期的漂浮日子,才能附物而居。在它准备附着时,会分泌一种胶质,使本身能牢牢的粘附在硬物上。
藤壺出家後,源氏也因為和
朧月夜私通的事件,被弘徽殿太后、右大臣等人做為把柄,不得已之下自我流放到須磨。三年之後,朱雀帝身邊接連發生不祥之事,便迎回源氏,並且退位給冷泉帝。此時源氏已經成熟不少,對藤壺的熱情也終究只能藏在內心裡。藤壺後來在三十七歲時過世,使源氏悲痛不已

星河幼儿园

下午,夕阳之光铺满房间的时候,我颠倒着起床了。望着西边,天涯的边上是断肠。人在夕阳下,总爱忧郁,总爱激活那压抑着的回忆。你没见过,黄昏下的我,是世界上最憨的人了。
忽然想到周末不能老呆在宿舍里复制DNA吧,决定出去把头发绞了。
小区门口,一个妈妈正在帮孩子穿裤子,视觉疲劳,往外一看,一辆黄色的中巴,校车两字显得很醒目。在广州呆久了,你就会条件反射到这种校车是报废厂里拖出来给外来工子弟凑合的。定睛一看,傻眼,崭新的一架车,就连内里的座位还套着塑料膜。如果有精神资产侵犯审查处,我肯定上去投诉那当家的,虽然处长也是当家的狗,但被狗咬一下总比黄色校车等于穷人专座的定向思维强吧。
很讨人厌的我有一项很上不了台面的本领,就像那秃鹫不怕病毒细菌的功夫,再烦人的事,三秒钟候总能在我的memory里面抹去,也就是release。这次我找来覆盖抹去区域的是,嘻嘻,车上的小朋友,小朋友总能让我感到恬静,乐和。虽然我和她对视了不到半分钟,但大家都举起了手彼此再见。当车的侧面完全被背面挡住的时候,我看不见她了,而车的后面是几个大字--“星河幼儿园”。

2008年11月7日星期五

鲁迅也是骗子?

怜悯是什么?一个谎言?一次施舍?受够了这个confused 秩序,于是,我阿Q着能去怜悯他人,武器?当然是虚无的#$%^^&!

厕所门口观望强迫侯群症患者的曙光

高兴点吧,我在想,进错厕所的几率到底有多大,有一只跳蚤那么大吗?自从经历了人生这一巨大的挫折之后,我发现我患上了厕所门口观望强迫侯群症,每次都要再三确认才敢跨出那艰难的一步。而两厕的距离又是那么地近,以致我通常被女性同胞们所鄙视。

手是嘴的手下败将

自从少先队宣誓以后,我就一直在苦练一种神秘的武功,今天,我忽然发现我的功力已到达了一个登峰造极的程度。我竟然能把痰吐到马路的对面去,没办法,就是这么邪门,老天,你什么时候让吐痰也成为一门专业啊,让我也能过过鲁班的瘾。
然而,每当你用手解决某样事情的时候,你总会感叹,还不如用嘴。